4 research outputs found

    Tomographic Quantum Cryptography

    Full text link
    We present a protocol for quantum cryptography in which the data obtained for mismatched bases are used in full for the purpose of quantum state tomography. Eavesdropping on the quantum channel is seriously impeded by requiring that the outcome of the tomography is consistent with unbiased noise in the channel. We study the incoherent eavesdropping attacks that are still permissible and establish under which conditions a secure cryptographic key can be generated. The whole analysis is carried out for channels that transmit quantum systems of any finite dimension.Comment: REVTeX4, 9 pages, 3 figures, 1 tabl

    A Survey of Finite Algebraic Geometrical Structures Underlying Mutually Unbiased Quantum Measurements

    Full text link
    The basic methods of constructing the sets of mutually unbiased bases in the Hilbert space of an arbitrary finite dimension are discussed and an emerging link between them is outlined. It is shown that these methods employ a wide range of important mathematical concepts like, e.g., Fourier transforms, Galois fields and rings, finite and related projective geometries, and entanglement, to mention a few. Some applications of the theory to quantum information tasks are also mentioned.Comment: 20 pages, 1 figure to appear in Foundations of Physics, Nov. 2006 two more references adde
    corecore